20 STERN AVE.
SPRINGFIELD, NEW JERSEY 07081
U.S.A.

TELEPHONE: (973) 376-2922

PIN Diodes for RF Switching and Attenuating

Technical Data

Features

- Low Harmonic Distortion
- Large Dynamic Range
- Low Series Resistance
- Low Capacitance

Description/Applications

These general purpose switching diodes are intended for low power switching applications such as RF duplexers. antenna switching matrices, digital phase shifters, and time multiplex filters. The 5082-3188 is optimized for VHF/UHF bandswitching.

The RF resistance of a PIN diode is a function of the current flowing in the diode. These current controlled resistors are specified for use in control applications such as variable RF attenuators, automatic gain control circuits, RF modulators, electrically tuned filters, analog phase shifters, and RF limiters.

Outline 15 diodes are available on tape and reel. The tape and reel specification is patterned after RS-296-D.

Maximum Ratings

Junction Operating and
Storage Temperature Range ... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation $25^{\circ} \mathrm{C}$
250 mW
(Derate Innearly to zero at $150^{\circ}{ }^{\circ}$)
Peak Inverse Voltage (PIV) .. same as VBR
Maximum Soldering Temperature $260^{\circ} \mathrm{C}$ for 5 sec

C: (Cathode)

Ereb: Co 34

General Purpose Diodes

Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Part Number 5082-	```Maximum Total Capacitance CT(pF)```	Minimum Breakdown Voltage \mathbf{V}_{BR} (V)	Maximum Residual Series Resistance $\mathbf{R}_{\mathbf{S}}(\Omega)$	Effective Carrier Lifetime τ (ns)	Reverse Recovery Time $t_{r r}$ (ns)
General Purpose Switching and Attenuating					
3001	0.25	200	1.0	100 (min.)	100 (typ.)
3039	0.25	150	1.25	100 (min.)	100 (typ.)
1N5719	0.3**	150	1.25	100 (min.)	100 (typ.)
3077	0.3	200	1.5	100 (min.)	100 (typ)
Band Switching		35	0.6**	70 (typ.)*	12 (typ.)
Test Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{R}}=50 \mathrm{~V} \\ * \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V} \\ * * \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$	$V_{R}=V_{B R}$ Measure $\mathrm{I}_{\mathrm{R}} \leq 10 \mu \mathrm{~A}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\ { } \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ { }^{* *} \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ \mathrm{f}=100 \mathrm{mHz} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{R}}=250 \mathrm{~mA} \\ { }^{*} \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ { }^{*} \mathrm{I}_{\mathrm{R}}=6 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{R}}=10 \mathrm{~V} \end{aligned}$ 90\% Recovery

Notes:
Typical CW power switching capability for a shunt switch in a 50Ω system is 2.5 W .

RF Current Controlled Resistor Diodes

Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

	Effective Carrier Lifetime t(ns)	Min. Breakdown Voltage $\mathbf{V}_{\text {BR }}$ (V)	Max. Residual Series Resistance $\mathrm{R}_{\mathrm{S}}(\Omega)$	Max.TotalCapacitance $^{\mathbf{C}_{\mathbf{T}}(\mathrm{pF})}$	$\begin{gathered} \text { High } \\ \text { Resistance } \\ \text { Limit, } \mathbf{R}_{\mathrm{H}}(\mathbf{W}) \end{gathered}$		Low Resistance Limit, \mathbf{R}_{L} (W)		Max. Difference in Resistance vs. Bias Slope, Dc
Part Number					Min.	Max.	Min.	Max.	
5082-3080	1300 (typ.)	100	2.5	0.4	1000			8**	
1N5767*	1300 (typ.)	100	2.5	0.4	1000			8**	
5082-3379	1300 (typ.)	50		0.4				$8{ }^{* *}$	
5082-3081	2500 (typ.)	100	3.5	0.4	1500			8**	
Test Conditions	$\begin{gathered} \mathbf{I}_{\mathbf{F}}=50 \mathrm{~mA} \\ \mathbf{I}_{\mathrm{R}}=250 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{BR}} \\ \text { Measure } \\ \mathfrak{I}_{\mathrm{R}} \leq 10 \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & V_{R}=50 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & I_{F}=0 . \\ & f=10 \end{aligned}$	$\begin{aligned} & 1 \mathrm{~mA} \\ & \mathrm{MHz} \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}= \\ \mathrm{I}_{\mathrm{F}}= \\ \mathrm{f}=1 \end{gathered}$	$\begin{aligned} & 0 \mathrm{~mA} \\ & \mathrm{~mA}^{* *} \\ & \mathrm{MHz} \end{aligned}$	Batch Matched at $\mathrm{I}_{\mathrm{F}}=0.01 \mathrm{~mA}$ and 1.0 mA $\mathrm{f}=100 \mathrm{MHz}$

*The IN5767 has the additional specfications:
$\tau=1.0 \mathrm{msec}$ minimum
$I_{R}=1 \mu \mathrm{~A}$ maximum at $V_{R}=50 \mathrm{~V}$
$V_{F}=1 \mathrm{~V}$ maximum at $I_{F}=100 \mathrm{~mA}$.

